Mechanical properties of α-tricalcium phosphate-based bone cements incorporating regenerative biomaterials for filling bone defects exposed to low mechanical loads.
نویسندگان
چکیده
Calcium phosphate-based cements with enhanced regenerative potential are promising biomaterials for the healing of bone defects in procedures such as percutaneous vertebroplasty. With a view to the use of such cements for low load bearing applications such as sinus augmentation or filling extraction sites. However, the inclusion of certain species into bone cement formulations has the potential to diminish the mechanical properties of the formulations and thereby reduce their prospects for clinical translation. Consequently, we have prepared α-tricalcium phosphate (α-TCP)-based bone cements including materials that we would expect to improve their regenerative potential, and describe the mechanical properties of the resulting formulations herein. Formulations incorporated α-TCP, hydroxyapatite, biopolymer-thickened wetting agents, sutures, and platelet poor plasma. The mechanical properties of the composites were composition dependent, and optimized formulations had clinically relevant mechanical properties. Such calcium phosphate-based cements have potential as replacements for cements such as those based on polymethylmethacrylate.
منابع مشابه
Effect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement
In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...
متن کاملFiber-enriched double-setting calcium phosphate bone cement.
Calcium phosphate bone cements are useful in orthopedics and traumatology, their main advantages being their biocompatibility and bioactivity, which render bone tissue osteoconductive, providing in situ hardening and easy handling. However, their low mechanical strength, which, in the best of cases, is equal to the trabecular bone, and their very low toughness are disadvantages. Calcium phospha...
متن کاملApplication of Calcium Phosphate Materials in Dentistry
Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improvi...
متن کاملAddition of Wollastonite Fibers to Calcium Phosphate Cement Increases Cell Viability and Stimulates Differentiation of Osteoblast-Like Cells
Calcium phosphate cement (CPC) that is based on α-tricalcium phosphate (α-TCP) is considered desirable for bone tissue engineering because of its relatively rapid degradation properties. However, such cement is relatively weak, restricting its use to areas of low mechanical stress. Wollastonite fibers (WF) have been used to improve the mechanical strength of biomaterials. However, the biologica...
متن کاملDevelopment and Characterization of Biphasic Hydroxyapatite/β-TCP Cements
Biphasic calcium phosphate bioceramics composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have relevant properties as synthetic bone grafts, such as tunable resorption, bioactivity, and intrinsic osteoinduction. However, they have some limitations associated to their condition of high-temperature ceramics. In this work self-setting Biphasic Calcium Phosphate Cements (BCPCs) with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part B, Applied biomaterials
دوره 104 1 شماره
صفحات -
تاریخ انتشار 2016